Multiway Simple Cycle Separators and I/O-Efficient Algorithms for Planar Graphs

Lars Arge
MADALGO
Aarhus University
Denmark

Freek van Walderveen
MADALGO
Aarhus University
Denmark

Norbert Zeh
Dalhousie University
Canada
Outline

- I/O-efficient planar graph algorithms
- Definition multiway simple cycle separator
- Internal-memory construction
- Summary
I/O-efficient algorithms

I/O: block of B elements

size: M elements
I/O-efficient algorithms

I/O: block of B elements

size: M elements

I/O model: analyze number of I/Os between internal and external memory
I/O-efficient algorithms

I/O model: analyze number of I/Os between internal and external memory

- Scanning N elements: $\Theta(N/B)$ I/Os
I/O-efficient algorithms

I/O model: analyze number of I/Os between internal and external memory

- Scanning N elements: $\Theta(N/B)$ I/Os

- Sorting N elements: $\Theta(\text{sort}(N)) = \Theta\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os
I/O-efficient planar graph algorithms
I/O-efficient planar graph algorithms
I/O-efficient planar graph algorithms

Partitioning planar graphs
I/O-efficient planar graph algorithms

Partitioning planar graphs
I/O-efficient planar graph algorithms

Partitioning planar graphs
Goal: partition planar graphs with guarantees on

- size of regions
- “perimeter” of regions
- (internal-memory) computation time
- \# I/Os (O(sort(N)))
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

- $\Theta(B)$ boundary vertices
- $\Theta(B^2)$ vertices per region
- in internal memory:
 $B \times $BFS/Dijkstra $\rightarrow \Omega(B^3)$
- total internal time:
 $\Omega(N/B^2 \cdot B^3) = \Omega(NB)$
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

- $\Theta(B)$ boundary vertices
- $\Theta(B^2)$ vertices per region
- in internal memory:
 $B \times$ BFS/Dijkstra $\rightarrow \Omega(B^3)$
- total internal time:
 $\Omega(N/B^2 \cdot B^3) = \Omega(NB)$

Note: same as $O(N)$ internal-memory algorithm!
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

- \(\Theta(B) \) boundary vertices
- \(\Theta(B^2) \) vertices per region
- in internal memory:
 \[B \times \text{BFS/Dijkstra} \rightarrow \Omega(B^3) \]
- total internal time:
 \[\Omega(N/B^2 \cdot B^3) = \Omega(NB) \]

Alternative:

- use Klein’s algorithm [2005] using \(O(B^2 \log B) \) time
- hence \(O(N/B^2 \cdot B^2 \log B) = O(N \log N) \) total time

BUT...
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

$O(1)$ holes... we can handle
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

$O(1)$ holes... we can handle
$\Omega(1)$ holes... not so much
I/O-efficient planar graph algorithms

Internal-memory computations on subgraphs: expensive

\(O(1) \) holes... we can handle
\(\Omega(1) \) holes... not so much
\[\Rightarrow \text{need separator with } O(1) \text{ holes per region} \]
Multiway simple cycle separators: definition and previous work

Given parameter ε ($0 < \varepsilon < 1$):
multiway simple cycle separator of triangulated planar graph G of N vertices partitions G into (not necessarily connected) regions, such that:

- Number of regions $= O(1/\varepsilon)$
- Region size $= O(\varepsilon N)$
- Region boundary size $= O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region
Multiway simple cycle separators: definition and previous work

Given parameter \(\varepsilon \) \((0 < \varepsilon < 1)\):
multiway simple cycle separator of triangulated planar graph \(G \) of \(N \) vertices
partitions \(G \) into (not necessarily connected) regions, such that:

- Number of regions = \(O(1/\varepsilon) \)
- Region size = \(O(\varepsilon N) \)
- Region boundary size = \(O(\sqrt{\varepsilon N}) \)
- \(O(1) \) holes per region

Previous work:

- Italiano, Nussbaum, Sankowski, Wulff-Nilsen: Improved algorithms for min cut and max flow in undirected planar graphs, STOC’11. \(O(N \log (\varepsilon N) + \sqrt{N/\varepsilon} \log N) \)

Concurrent work:

Multiway cycle separators: construction

Requirements:
- \(O(1/\varepsilon) \) regions
- Region size \(O(\varepsilon N) \)
- Region boundary \(O(\sqrt{\varepsilon N}) \)
- \(O(1) \) holes per region

Big regions: size \(> \varepsilon N \).
Multiway cycle separators: construction

First: design $O(N)$ time internal-memory algorithm

Overview of internal-memory algorithm:

Step 1. Partition into small or low-diameter regions

Step 2. Split big (low-diameter) regions

Step 3. Limit #regions, boundary sizes, and #holes per region

Second: make I/O-efficient, i.e. $O(sort(N))$ I/Os, $O(N \log N)$ time
(Use bootstrapping with SSSP.)

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

First: design $O(N)$ time internal-memory algorithm

Overview of internal-memory algorithm:

Step 1. Partition into small or low-diameter regions

Step 2. Split big (low-diameter) regions

Step 3. Limit #regions, boundary sizes, and #holes per region

Second: make I/O-efficient, i.e. $O(\text{sort}(N))$ I/Os, $O(N \log N)$ time
(Use bootstrapping with SSSP.)

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Requirements:
- \(O(1/\varepsilon) \) regions
- Region size \(O(\varepsilon N) \)
- Region boundary \(O(\sqrt{\varepsilon N}) \)
- \(O(1) \) holes per region

Big regions: size \(> \varepsilon N \)
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region
Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Select boundaries of faces in consecutive levels

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Select boundaries of faces in consecutive levels

Requirements:
- O(1/\varepsilon) regions
- Region size O(\varepsilon N)
- Region boundary O(\sqrt{\varepsilon N})
- O(1) holes per region

Big regions: size > \varepsilon N
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Select boundaries of faces in consecutive levels

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

BFS on face-incidence graph (like Miller’s two-way simple cycle separator)

Select boundaries of faces in consecutive levels

Choose k such that $\#\text{selected edges} = O(\sqrt{N/\varepsilon})$

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:

- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:

- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:
- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles
- Drop critical cycles and descendants

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:

- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles
- Drop critical cycles and descendants
- Limit diameter: prune $G \rightarrow G'$

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:

- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles
- Drop critical cycles and descendants
- Limit diameter: prune $G \rightarrow G'$

Requirements:

- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$

Each big region: spanning tree with (weighted) diameter $\sqrt{\varepsilon N}$
Multiway cycle separators: construction

Step 1. Partition into small or low-diameter regions

Reduce #boundary cycles:

- Construct nesting tree T
- Find light edges (dashed)
- Define critical cycles
- Drop critical cycles and descendants
- Limit diameter: prune $G \rightarrow G'$
- Merge light regions

Requirements:

- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$

Each big region: spanning tree with (weighted) diameter $\sqrt{\varepsilon N}$
Multiway cycle separators: construction

Step 2. Split big (low-diameter) regions
Goal: Partition G' (and G) into small regions

Step 2.1: Separation tree decomposition
Step 2.2: Nesting forest decomposition

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 2. Split big (low-diameter) regions
Goal: Partition G' (and G) into small regions

Step 2.1: Separation tree decomposition
Step 2.2: Nesting forest decomposition

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 2. Split big (low-diameter) regions
Goal: Partition G' (and G) into small regions

Step 2.1: Separation tree decomposition
Step 2.2: Nesting forest decomposition

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 2. Split big (low-diameter) regions
Goal: Partition G' (and G) into small regions

Step 2.1: Separation tree decomposition
Step 2.2: Nesting forest decomposition

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$
Multiway cycle separators: construction

Step 2. Split big (low-diameter) regions
Goal: Partition G' (and G) into small regions

Step 2.1: Separation tree decomposition
Step 2.2: Nesting forest decomposition

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$

Output Step 2.1:
Big regions, such that regions hanging off region roots are small

T': primal spanning tree

T^*: dual spanning tree
Multiway simple cycle separators

Summary

- \(O(N)\) time internal-memory algorithm
- I/O-efficient algorithm using \(O(\text{sort}(N))\) I/Os and \(O(N \log N)\) time
- Applications (same I/O and time bounds):
 - SSSP
 - Topsort DAGs
 - Strongly connected components

Bonus features, see paper

- Support vertex, edge, and face weights
- Support general 2-edge-connected graphs with max. face size \(s\) (boundary size \(\rightarrow O(\sqrt{\varepsilon sN})\))

Requirements:
- \(O(1/\varepsilon)\) regions
- Region size \(O(\varepsilon N)\)
- Region boundary \(O(\sqrt{\varepsilon N})\)
- \(O(1)\) holes per region

Big regions: size \(> \varepsilon N\)
Multiway simple cycle separators

Summary

- $O(N)$ time internal-memory algorithm
- I/O-efficient algorithm using $O(sort(N))$ I/Os and $O(N \log N)$ time
- Applications (same I/O and time bounds):
 - SSSP
 - Topsort DAGs
 - Strongly connected components

Requirements:
- $O(1/\varepsilon)$ regions
- Region size $O(\varepsilon N)$
- Region boundary $O(\sqrt{\varepsilon N})$
- $O(1)$ holes per region

Big regions: size $> \varepsilon N$

Bonus features, see paper

- Support vertex, edge, and face weights
- Support general 2-edge-connected graphs with max. face size s
 (boundary size $\to O(\sqrt{\varepsilon s N})$)

Thanks, that’s it!